Publicaciones

i

Muñoz-Rengifo J, Chirino E, Cerdán V, Martínez J, Fosado O, Vilagrosa A (2020). Using field and nursery treatments to establish Quercus suber seedlings in Mediterranean degraded shrubland. iForest 13: 114-123.

DOI 10.3832/ifor3095-013.

Download

i

Gallego JCA, Caro JG, Campos VH, Lobón NC (2020) Effect of Leaf Litter from Cistus ladanifer L. on the Germination and Growth of Accompanying Shrubland Species. Plants 9, 593.

DOI 10.3390/plants9050593

Download

 

i

Teixeira HM, Cardoso IM, Bianchi FJJA, Silva AC, Jamme D, Peña-Claros M (2020) Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecology and Management 457, 117696.

DOI 10.1016/j.foreco.2019.117696.

i

Príncipe A, Matos P, Sarris D, Gaiola G, Rosário L, Correia O, Branquinho C (2019) In Mediterranean drylands microclimate affects more tree seedlings than adult trees. Ecological Indicators 106, 105476.

DOI: 10.1016/j.ecolind.2019.105476.

i

Ritsche J, Katzensteiner K, Acácio V (2021). Tree regeneration patterns in cork oak landscapes of Southern Portugal: The importance of land cover type, stand characteristics and site conditions. Forest Ecology and Management 486: 118970.

DOI : 10.1016/j.foreco.2021.118970.

i

Montero-Muñoz J et al. (2021). Regeneration Dynamics in Fragmented Landscapes at the Leading Edge of Distribution: Quercus Suber L. as A Study Case. Planta and Soil preprint.

DOI: 10.21203/rs.3.rs-278592/v1

Download

i

Simões MP, Belo AF, Fernandes M, Madeira M (2016). Regeneration patterns of Quercus suber according to montado management systems. Agroforest Systems 90:107–115.

DOI 10.1007/s10457-015-9818-6

i

OakRegeneration (2018). ÁREAS DE REGENERAÇÃO NATURAL DE SOBREIRO: RESULTADOS PRELIMINARES DE PADRÕES DE OCORRÊNCIA NO MONTADO. Conference paper, 13 pp.

i

Costa A & Pereira C (2007). Manual de instalação de novos povoamentos com sobreiro - Aplicação de boas práticas nas regiões da Chamusca e de Alcácer do Sal. ISA, ERENA, ANSUB, ACHAR.

i

Costa A, Madeira M & Plieninger T (2014). Cork oak woodlands patchiness: A signature of imminent decline? Applied Geography 54: 18-26.

i

Costa A, Madeira M & Santos JL (2014). Is cork oak (Quercus suber L.) woodland loss driven by eucalyptus plantation? A case-study in southwestern Portugal. IForest - Biogeosciences and Forestry 7: 193-203.

i

Costa A, Madeira M, Santos JL et al (2014). Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators. Journal of Environmental Management 133:18-26.

i

Costa A, Madeira M, Santos JL et al (2011). Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landscape and Urban Planning 102(3):164-176.

i

Acácio V, Holmgren M, Jansen PA et al (2007). Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220-1230.

i

Acácio V, Holmgren M, Moreira F et al (2010). Oak persistence in Mediterranean landscapes: the combined role of management, topography, and wildfires. Ecology and Society 15(4): 40.

i

Acácio V, Holmgren M, Rego F et al (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems 76: 389-400.

i

Arosa ML, Ceia RS, Costa SR et al (2015). Factors affecting cork oak (Quercus suber) regeneration: acorn sowing success and seedling survival under field conditions. Plant Ecology & Diversity 8(4): 519-528.

i

Bernhardt EA & Swiecki TJ (2001). Restoring Oak Woodlands in California: Theory and Practice. Phytosphere Research.

i

Brudvig LA & Asbjornsen H (2008) Patterns of oak regeneration in a Midwestern savanna restoration experiment. Forest Ecology and Management 255:3019-3025.

i

Carmona C P, Azcárate FM, Oteros-Rozas E et al. (2013). Assessing the effects of seasonal grazing on holm oak regeneration: Implications for the conservation of Mediterranean dehesas. Biological Conservation 159: 240-247

i

Cierjacks A & Hensen I (2004). Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient. Plant Ecology 173:215–223.

i

Clark FB (1992) An historical perspective of oak regeneration. In: Oak regeneration: Serious problems, Practical Recommendations. DL Loftis and CE McGee (eds) Symposium Proceedings, Knoxville, Tennessee p. 3-13.

i

Costa A, Villa S, Alonso P et al (2017) Can native shrubs facilitate the early establishment of contrasted co-occurring oaks in Mediterranean grazed areas? Journal of Vegetation Science 28:1047-1056.

i

Espelta JM, Riba M & Retana J (1995). Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. Journal of Vegetation Science 6(4):465-472.

i

Gea-Izquierdo G, Cañellas I & Montero G (2006). Acorn production in Spanish holm oak woodlands. Forest Systems 15(3): 339-354.

i

Gómez JM (2003). Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26:573-584.

i

Gómez-Aparicio L, Zamora R, Gómez JM et al (2004). Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications 14(4):1128-1138.

i

Gómez-Aparicio L, Valladares F, Zamora R et al (2005).Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography 28:757–768.

i

Listopad MCS, Köbel M, Príncipe A et al (2018). The effect of grazing exclusion over time on structure, biodiversity, and regeneration of high nature value farmland ecosystems in Europe. Science of the Total Environment 610-611: 926-936.

i

Maltez-Mouro S, García LV, Marañón T et al (2007). Recruitment patterns in a Mediterranean oak forest: a case study showing the importance of the spatial component. Forest Science 53(6):645-652.

i

Maltez-Mouro S, García LV & Freitas H (2009). Influence of forest structure and environmental variables on recruit survival and performance of two Mediterranean tree species (Quercus faginea L. and Q. suber Lam.) European Journal of Forest Research 128(1): 27-36.

i

Montero G, Torres E, Canellas C et al (1994). Regeneración de alcornocales. Síntesis bibliográfica. In Simposio Mediterráneo sobre Regeneración del Monte Alcornocal, Mérida/Montsargil/Sevilla. Instituto de Promoción del Corcho, Mérida, p 101-112.

i

Moreno G & Pulido FJ (2009). The function, management and persistence of dehesas. In: Agroforestry systems in Europe, current status and future prospects. A Rigueiro, MR Mosquera, J McAdam (eds). Berlin: Springer. p 127–160.

i

Pausas JG (1997). Resprouting of Quercus suber in NE Spain after fire. Journal of Vegetation Science 8: 703-706.

i

Pausas JG, Ribeiro E, Dias SG et al (2006). Regeneration of a marginal Quercus suber forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17:729-738.

i

Pausas JG, Marañon T, Caldeira M et al (2009). Natural regeneration. In: Cork oak woodlands on the edge, ecology, adaptive management, and restoration. J Aronson, JS Pereira, JG Pausas (eds). Washington (DC): Island Press. p 115-128.

i

Pérez-Devesa M, Cortina J, Vilagrosa A et al (2008). Shrubland management to promote Quercus suber L. establishment. Forest Ecology and Management 255:374-382.

i

Pérez-Ramos IM, Urbieta IR, Zavala MA et al (2008). Regeneration ecology of Quercus suber (cork oak) in southern Spain. In: SuberWood: New challenges for the integration of cork oak forests and products. Universidad de Huelva. P 195-204

i

Plieninger T (2007). Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. Journal of Natural Conservation 15:1-9.

i

Plieninger T, Pulido FJ & Konold W (2003). Effects of land use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environmental Conservation 30:61-70.

i

Plieninger T, Pulido FJ & Schaich H (2004). Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. Journal of Arid Environments 57:345-64.

i

Pons J & Pausas JG (2006). Oak regeneration in heterogeneous landscapes: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecology and Management 231:196-204.

i

Pons J & Pausas JG (2008). Modelling jay (Garrulus glandarius) abundance and distribution for oak regeneration assessment in Mediterranean landscapes. Forest Ecology and Management 256:578–84.

i

Pulido FJ & Díaz M (2002). Dinámica de la regeneración natural del arbolado de encina y alcornoque. In La gestión forestal de las dehesas. FJ Pulido, P Campos & G Montero (eds), IPROCOR, Mérida p. 39-62.

i

Pulido FJ & Díaz M (2005). Regeneration of a Mediterranean oak: a whole cycle approach. Ecoscience 12:92-102.

i

Pulido FJ, Díaz M & Trucios S H (2001). Size-structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. Forest Ecology and Management 146:1-13.

i

Pulido F, García E, Obrador JJ et al (2010). Multiple pathways for tree regeneration in anthropogenic savannas: incorporating biotic and abiotic drivers into management schemes. Journal of Applied Ecology 47:1272-1281.

i

Ramírez JA & Díaz M (2008). The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. Forest Ecology and Management 255:1976-83.

i

Rolo V, Plieninger T & Moreno G (2013). Facilitation of holm oak recruitment through two contrasted shrubs species in Mediterranean grazed woodlands. Journal of Vegetation Science 24: 344–355.